Abstract
Recently, fullerene (C60) has been widely used as a nano photosensitizer (PS) for tumor related photodynamic therapy (PDT). However, current PDT based on C60 is severely restricted by the visible light source (shallow tissue penetrating depth) and oxygen dependent (tumor hypoxia). Therefore, taking advantages of the surface plasmon resonance (SPR) effect of gold nanoparticles (GNPs) and “electronic sponge” property of C60, a C60 based hybrid nanostructured photosensitizer (C60@GNPs) with high light stability, near infrared light (NIR) excitation, and oxygen non-dependent properties was rational designed according to the mechanism of PDT. Compared with C60, after GNPs in-situ synthesis, the PDT mechanism of C60@GNPs changed from type II to type I, and the main product of PDT changed from singlet oxygen to hydroxyl radicals. Furthermore, C60@GNPs hybrid could efficiently generate hydroxyl radicals under NIR light excitation even in the hypoxia condition. These results suggest that C60@GNPs hybrid has a great potential for in vivo PDT applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.