Abstract

The accuracy of the recent vehicle dynamics simulation technology, represented by Multi-Body Simulations along with reliable tire models, has been remarkably progressing and provides reasonable simulation results not only for conventional passive vehicles but also for advanced active vehicles equipped with electronic components; however, when it comes to advanced vehicle applications with complex active systems, the complexity causes a longer simulation time. On the other hand, even though simple numerical vehicle simulation models such as single-track, two-track and a dozen degrees of freedom (dofs) models can provide less information than those of multi-body models, they are still appreciated by specific applications particularly the ones related to the development of active systems. The advantages of these numerical simulation models lie in the simulation platform, namely the Matlab/Simulink environment, which is suitable for modeling electronic components. In this paper, an 18 dofs vehicle model has been proposed for the development of a type of active suspension named Variable Camber which has an additional degree of freedom in camber angle direction and a description of the models and some preliminary results are reported: the control strategy for the variable camber suspension will be published ([3]). The model can reproduce a passive vehicle with a passive suspension as well; all the necessary dimensions, parameters, and physical properties are derived from a specific multi-body full vehicle model which has been fully validated with respect to a real one on the track. As for a tire model, Magic Formula 5.2 has been implemented on both the numerical and the multi-body vehicle models respectively so that the same tire model can be applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.