Abstract

Budget restrictions have forced the ITER Organization to reconsider the baseline divertor strategy, in which operations would begin with carbon (C) in the high heat flux regions, changing out to a full-tungsten (W) variant before the first nuclear campaigns. Substantial cost reductions can be achieved if one of these two divertors is eliminated. The new strategy implies not only that ITER would start-up on a full-W divertor, but that this component should survive until well into the nuclear phase. This paper considers the risks engendered by such an approach with regard to known W plasma-material interaction issues and briefly presents the current status of a possible full-W divertor design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.