Abstract
Abstract A full-reference image quality assessment (FR-IQA) method for multi-distortion based on visual mutual information (MD-IQA) is proposed to solve the problem that the existing FR-IQA methods are mostly applicable to single-distorted images, but the assessment result for multiply distorted images is not ideal. First, the reference image and the distorted image are preprocessed by steerable pyramid decomposition and contrast sensitivity function (CSF). Next, a Gaussian scale mixture (GSM) model and an image distorted model are respectively constructed for the reference images and the distorted images. Then, visual distorted models are constructed both for the reference images and the distorted images. Finally, the mutual information between the processed reference image and the distorted image is calculated to obtain the full-reference quality assessment index for multiply distorted images. The experimental results show that the proposed method has higher accuracy and better performance for multiply distorted images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.