Abstract

BackgroundThe obligate parasitic plant witchweed (Striga hermonthica) infects major cereal crops such as sorghum, maize, and millet, and is the most devastating weed pest in Africa. An understanding of the nature of its parasitism would contribute to the development of more sophisticated management methods. However, the molecular and genomic resources currently available for the study of S. hermonthica are limited.ResultsWe constructed a full-length enriched cDNA library of S. hermonthica, sequenced 37,710 clones from the library, and obtained 67,814 expressed sequence tag (EST) sequences. The ESTs were assembled into 17,317 unigenes that included 10,319 contigs and 6,818 singletons. The S. hermonthica unigene dataset was subjected to a comparative analysis with other plant genomes or ESTs. Approximately 80% of the unigenes have homologs in other dicotyledonous plants including Arabidopsis, poplar, and grape. We found that 589 unigenes are conserved in the hemiparasitic Triphysaria species but not in other plant species. These are good candidates for genes specifically involved in plant parasitism. Furthermore, we found 1,445 putative simple sequence repeats (SSRs) in the S. hermonthica unigene dataset. We tested 64 pairs of PCR primers flanking the SSRs to develop genetic markers for the detection of polymorphisms. Most primer sets amplified polymorphicbands from individual plants collected at a single location, indicating high genetic diversity in S. hermonthica. We selected 10 primer pairs to analyze S. hermonthica harvested in the field from different host species and geographic locations. A clustering analysis suggests that genetic distances are not correlated with host specificity.ConclusionsOur data provide the first extensive set of molecular resources for studying S. hermonthica, and include EST sequences, a comparative analysis with other plant genomes, and useful genetic markers. All the data are stored in a web-based database and freely available. These resources will be useful for genome annotation, gene discovery, functional analysis, molecular breeding, epidemiological studies, and studies of plant evolution.

Highlights

  • The obligate parasitic plant witchweed (Striga hermonthica) infects major cereal crops such as sorghum, maize, and millet, and is the most devastating weed pest in Africa

  • Leaves of S. hermonthica plants parasitizing to rice were harvested and the DNA contents were measured with a flow cytometer

  • To assess the quality of the resulting library, the inserts from 90 randomly picked clones were amplified by PCR with primers specific to the library vector, and the insert sizes were estimated by agarose-gel electrophoresis (Table 2)

Read more

Summary

Introduction

The obligate parasitic plant witchweed (Striga hermonthica) infects major cereal crops such as sorghum, maize, and millet, and is the most devastating weed pest in Africa. Striga hermonthica is an obligate root parasite belonging to the family Orobanchaceae, and is a major constraint of crop production in sub-Saharan Africa. S. hermonthica infests economically important crops such as sorghum, maize, millet, and upland rice, and the yield losses caused by this species have been estimated to cost as much as US$ 7 billion annually [1]. The seeds need to be exposed to germination stimulants exudated from the host roots, such as strigolactones and ethylene; otherwise they can remain dormant in the soil for several decades [2]. The germinated seedlings form haustoria, which are round shaped organs specialized in host

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call