Abstract
Object detection accuracy on small objects, i.e., objects under 32 × 32 pixels, lags behind that of large ones. To address this issue, innovative architectures have been designed and new datasets have been released. Still, the number of small objects in many datasets does not suffice for training. The advent of the generative adversarial networks (GANs) opens up a new data augmentation possibility for training architectures without the costly task of annotating huge datasets for small objects. In this paper, we propose a full pipeline for data augmentation for small object detection which combines a GAN-based object generator with techniques of object segmentation, image inpainting, and image blending to achieve high-quality synthetic data. The main component of our pipeline is DS-GAN, a novel GAN-based architecture that generates realistic small objects from larger ones. Experimental results show that our overall data augmentation method improves the performance of state-of-the-art models up to 11.9% APs@.5 on UAVDT and by 4.7% APs@.5 on iSAID, both for the small objects subset and for a scenario where the number of training instances is limited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.