Abstract

In the present paper, a three-dimensional elasticity approach is employed to investigate buckling of heterogeneous functionally graded plates under biaxial compression, shear, tension-compression, and shear-compression load conditions. In this regard, a formulation that employs a full compatible three-dimensional Hermitian element with 168 degrees of freedom and guarantees continuity of the strain and stress components is used. It is known that all of the available famous commercial finite element softwares and the proposed series solutions satisfy continuity conditions of the displacement rather than the stress components. Buckling occurrence is detected based on checking both the instability onset and equilibrium criteria. Results are extracted based on a Galerkin-type orthogonality. Therefore, they are more accurate than those obtained based on the traditional Ritz method. The presented three-dimensional finite element analysis and the extracted results are quite new. A vast variety of results including results of biaxial compression, compression-tension, shear, and shear-compression load cases is considered and discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.