Abstract

Abstract High-temperature superconducting (HTS) magnets are promising in high field applications. However, due to inevitable joint resistance and flux creep, HTS magnets still face challenges in maintaining field stability in their closed-loop operation. HTS flux pumps can charge closed HTS magnets wirelessly, thus allowing lower cryogenic loading and more flexible arrangements in HTS magnet systems. In this work, a full-bridge flux pump using two AC field-controlled switches is proposed, which can charge HTS magnets during whole cycles. Therefore, the charging speed of the proposed full-bridge flux pump is at least one time larger than half-bridge flux pumps. A numerical model and an experimental prototype are developed to verify the working principle of the proposed full-bridge flux pump. Simulation and experimental tests are carried out to investigate the working characteristics of the proposed flux pump. The proposed flux pump has huge potential in the application scenarios where high charging speed is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.