Abstract

The optimization of the performance of optical modulators requires reasonably accurate predictive models for key figures of merit. The interleaved PN junction topology offers the maximum mode/junction overlap and enables the most efficient modulators for depletion-mode operation. Due to the structure of such devices, accurate modeling must be fully three dimensional (3D), representing a nontrivial computational problem. A rigorous 3D model for the modulation efficiency of a silicon-on-insulator interleaved-junction optical phase modulator with submicron dimensions is presented herein. The drift–diffusion and Poisson’s equations are solved on a 3D finite-element mesh, while Maxwell’s equations are solved using the finite-difference time-domain method on 3D Yee cells. The entire modeling process is presented in detail, and all the coefficients required by the model are presented. The model validation suggests < 10% root-mean-square (RMS) error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.