Abstract
We generalize the following classical result of Fubini to pseudo-Riemannian metrics: if three essentially different metrics on an (n ≥ 3)-dimensional manifold M share the same unparametrized geodesics, and two of them (say, g and g) are strictly nonproportional (that is, the minimal polynomial of the g-self-adjoint (1, 1)-tensor defined by g coincides with the characteristic polynomial) at least at one point, then they have constant sectional curvature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.