Abstract

Anthocyanins are water-soluble flavonoid pigments that play a crucial role in plant growth and metabolism. They serve as attractants for animals by providing plants with red, blue, and purple pigments, facilitating pollination and seed dispersal. The fruits of solanaceous plants, tomato (Solanum lycopersicum) and eggplant (Solanum melongena), primarily accumulate anthocyanins in the fruit peels, while the ripe fruits of Atropa belladonna (Ab) have a dark purple flesh due to anthocyanin accumulation. In this study, an R2R3-MYB transcription factor (TF), AbMYB1, was identified through association analysis of gene expression and anthocyanin accumulation in different tissues of A. belladonna. Its role in regulating anthocyanin biosynthesis was investigated through gene overexpression and RNA interference (RNAi). Overexpression of AbMYB1 significantly enhanced the expression of anthocyanin biosynthesis genes, such as AbF3H, AbF3'5'H, AbDFR, AbANS, and Ab3GT, leading to increased anthocyanin production. Conversely, RNAi-mediated suppression of AbMYB1 resulted in decreased expression of most anthocyanin biosynthesis genes, as well as reduced anthocyanin contents in A. belladonna. Overall, AbMYB1 was identified as a fruit-expressed R2R3-MYB TF that positively regulated anthocyanin biosynthesis in A. belladonna. This study provides valuable insights into the regulation of anthocyanin biosynthesis in Solanaceae plants, laying the foundation for understanding anthocyanin accumulation especially in the whole fruits of solanaceous plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call