Abstract

We present a new high-order front-tracking method for hyperbolic systems of conservation laws for two gases separated by a tracked contact discontinuity, using a combination of a high-order Godunov algorithm and level set methods. Our approach discretizes the moving front and gas domains on a Cartesian grid, with control volumes determined by the intersection of the grid with the front. In cut cells, a combination of conservative and non-conservative finite volume quadratures provide small-cell stability. Global conservation is maintained using redistribution. We demonstrate second-order convergence in smooth flow and firstorder convergence in the presence of shocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.