Abstract

To investigate the nonlinear vibration behavior of a shrouded blade with friction dynamic contact interface, a friction contact stiffness model is proposed to describe the friction force at different rough interfaces and different normal loads. In the proposed model, the friction contact interface is discretized to a series of friction contact pairs and each of them can experience stick, slip, or separate states. Fractal geometry is used to simulate the topography of contact surfaces. The contact stiffness is calculated using the Hertz contact theory and fractal geometry, which is related to contact interfaces parameters including normal load, roughness, Young’s modulus, and Poisson’s ratio. The trajectory tracking method is used to predict the friction force and it is not necessary to judge the transition condition among stick, slip, and separate states. It is suitable for complicated periodic motion of the contact interfaces. The forced response of a real shrouded blade is predicted using the proposed model and the multi-harmonic balance method. The effect of surface roughness, initial normal load, and contact area on the forced response of a shrouded blade is studied. It is shown that contact stiffness increases with normal load and fractal dimension. The resonant amplitude is sensitive to the initial normal load and contact surface roughness. The response can be influenced by the contact area, which is an important parameter for blade designers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.