Abstract

Numerous numerical studies have been carried out in recent years that simulate different aspects of exoplanets’ magnetosphere and stellar winds. These studies have focused primarily on hot Jupiters with sun-like stars. This study addresses the challenges inherent in utilizing existing MHD codes to model hot Jupiter-star systems. Due to the scaling of the system and the assumption of a uniformly flowing stellar wind at the outer boundary of the simulation, MHD codes necessitate a minimum distance of greater than 0.4 au for a Jupiter-like planet orbiting a sun-like star to avoid substantial violations of the code’s assumptions. Additionally, employing the GAMERA (Grid Agnostic MHD for Extended Research Applications) MHD code, we simulate star-planet interactions considering various stellar types (Sun-like and M Dwarf stars) with both Jupiter-like and rocky planets positioned at varying orbital distances. Furthermore, we explore the impact of tidal locking on the total power within the magnetosphere-ionosphere systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.