Abstract
Interactions and effect aliasing are among the fundamental concepts in experimental design. In this paper, some new insights and approaches are provided on these subjects. In the literature, the “de-aliasing” of aliased effects is deemed to be impossible. We argue that this “impossibility” can indeed be resolved by employing a new approach which consists of reparametrization of effects and exploitation of effect non-orthogonality. This approach is successfully applied to three classes of designs: regular and nonregular two-level fractional factorial designs, and three-level fractional factorial designs. For reparametrization, the notion of conditional main effects (cme’s) is employed for two-level regular designs, while the linear-quadratic system is used for three-level designs. For nonregular two-level designs, reparametrization is not needed because the partial aliasing of their effects already induces non-orthogonality. The approach can be extended to general observational data by using a new bi-level variable selection technique based on the cme’s. A historical recollection is given on how these ideas were discovered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.