Abstract

The main objective of the paper is to propose a frequentist interpretation of probability in the context of model-based induction, anchored on the Strong Law of Large Numbers (SLLN) and justifiable on empirical grounds. It is argued that the prevailing views in philosophy of science concerning induction and the frequentist interpretation of probability are unduly influenced by enumerative induction, and the von Mises rendering, both of which are at odds with frequentist model-based induction that dominates current practice. The differences between the two perspectives are brought out with a view to defend the model-based frequentist interpretation of probability against certain well-known charges, including [i] the circularity of its definition, [ii] its inability to assign ‘single event’ probabilities, and [iii] its reliance on ‘random samples’. It is argued that charges [i]–[ii] stem from misidentifying the frequentist ‘long-run’ with the von Mises collective. In contrast, the defining characteristic of the long-run metaphor associated with model-based induction is neither its temporal nor its physical dimension, but its repeatability (in principle); an attribute that renders it operational in practice. It is also argued that the notion of a statistical model can easily accommodate non-IID samples, rendering charge [iii] simply misinformed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.