Abstract

Many of the forthcoming video services and multimedia applications are expected to use preencoded video for storage and transmission. Video transcoding is intended to provide transmission flexibility to preencoded bit streams by dynamically adjusting the bit rate of these bit streams according to new bandwidth constraints that were unknown at the time of encoding. In this paper, we propose a drift-free MPEG-2 video transcoder, working entirely in the frequency domain. The various modes of motion compensation (MC) defined in MPEG-2 are implemented in the discrete cosine transform (DCT) domain at reduced computational complexity. By using approximate matrices to compute the MC-DCT blocks, we show that computational complexity can be reduced by 81% compared with the pixel domain approach. Moreover, by using a Lagrangian rate-distortion optimization for bit reallocation, we show that optimal transcoding of high-quality bit streams can produce better picture quality than that obtained by directly encoding the uncompressed video at the same bit rates using a nonoptimized Test Model 5 (TM5) encoder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.