Abstract

This paper focuses on norm-optimal iterative learning control (NO-ILC) for single-input-single-output (SISO) linear time invariant (LTI) systems and presents an infinite time horizon approach for a frequency-dependent design of NO-ILC weighting filters. Because NO-ILC is a model-based learning algorithm, model uncertainty can degrade its performance; hence, ensuring robust monotonic convergence (RMC) against model uncertainty is important. This robustness, however, must be balanced against convergence speed (CS) and steady-state error (SSE). The weighting filter design approaches for NO-ILC in the literature provide limited design freedom to adjust this trade-off. Moreover, even though qualitative guidelines to adjust the trade-off exist, a quantitative characterization of the trade-off is not yet available. To address these two gaps, a frequency-dependent weighting filter design is proposed in this paper and the robustness, convergence speed, and steady-state error are analyzed in the frequency domain. An analytical expression characterizing the fundamental trade-off of NO-ILC with respect to robustness, convergence speed, and steady-state error at each frequency is presented. Compared to the state of the art, a frequency-dependent filter design gives increased freedom to adjust the trade-off between robustness, convergence speed, and steady-state error because it allows the design to meet different performance requirements at different frequencies. Simulation examples are given to confirm the analysis and demonstrate the utility of the developed filter design technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.