Abstract

A frequency and amplitude dependent model is used to describe the complex behavior of rail pads. It is implemented into the dynamic analysis of three dimensional coupled vehicle-slab track (3D-CVST) systems. The vehicle is treated as a 35-degree-of-freedom multi-body system, and the slab track is represented by two continuous Bernoulli-Euler beams supported by a series of elastic rectangle plates on a viscoelastic foundation. The rail pad model takes into account the influences of the excitation frequency and of the displacement amplitude through a fractional derivative element, and a nonlinear friction element, respectively. The Grunwald representation of the fractional derivatives is employed to numerically solve the fractional and nonlinear equations of motion of the 3D-CVST system by means of an explicit integration algorithm. A dynamic analysis of the 3D-CVST system exposed to excitations of rail harmonic irregularities is primarily carried out, which reveals the dependence of stiffness and damping on excitation frequency and displacement amplitude. Subsequently, sensitive analyses of the model parameters are investigated by conducting the dynamic analysis of the 3D-CVST system subjected to excitations of welded rail joint irregularities. Following this, parameters of the rail pad model are optimized with respect to experimental values. For elucidation, the 3D-CVST dynamic model incorporated with the rail pads model is used to calculate the wheel/rail forces induced by excitations of measured random track irregularities. Further, the numerical results are compared with experimental data, demonstrating the reliability of the proposed model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call