Abstract
AbstractA free‐standing high‐output power density polymeric thermoelectric (TE) device is realized based on a highly conductive (≈2500 S cm−1) structure‐ordered poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate film (denoted as FS‐PEDOT:PSS) with a Seebeck coefficient of 20.6 µV K−1, an in‐plane thermal conductivity of 0.64 W m−1 K−1, and a peak power factor of 107 µW K−2 m−1 at room temperature. Under a small temperature gradient of 29 K, the TE device demonstrates a maximum output power density of 99 ± 18.7 µW cm−2, which is the highest value achieved in pristine PEDOT:PSS based TE devices. In addition, a fivefold output power is demonstrated by series connecting five devices into a flexible thermoelectric module. The simplicity of assembling the films into flexible thermoelectric modules, the low out‐of‐plane thermal conductivity of 0.27 W m−1 K−1, and free‐standing feature indicates the potential to integrate the FS‐PEDOT:PSS TE modules with textiles to power wearable electronics by harvesting human body's heat. In addition to the high power factor, the high thermal stability of the FS‐PEDOT:PSS films up to 250 °C is confirmed by in situ temperature‐dependent X‐ray diffraction and grazing incident wide angle X‐ray scattering, which makes the FS‐PEDOT:PSS films promising candidates for thermoelectric applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.