Abstract
Freezing behavior is commonly used as a measure of associative fear memory. It can be measured by a trained observer, but this task is time-consuming and subject to variation. Commercially available software packages can also be used to quantify freezing; however, they can be expensive and usually require various parameters to be adjusted by the researcher, leading to additional work and variability in results. With this in mind, we developed Phobos, a freely available, self-calibrating software that measures freezing in a set of videos using a brief manual quantification performed by the user to automatically adjust parameters. To optimize the software, we used four different video sets with different features in order to determine the most relevant parameters, the amount of videos needed for calibration and the minimum criteria to consider it reliable. The results of four different users were compared in order to test intra- and interobserver variability in manual and automated freezing scores. Our results suggest that Phobos can be an inexpensive, simple and reliable tool for measurement of fear-related behavior, with intra- and interuser variability similar to that obtained with manual scoring.
Highlights
The pairing of a conditioned stimulus (CS, e.g., context) with an aversive unconditioned stimulus (US, e.g., electric shock) produces an association between stimuli that leads to fear conditioning, a phenomenon that is widely used to study memory in laboratory animals (Fendt and Fanselow, 1999)
We show that the procedure is sufficient to achieve good performance for video sets recorded under most conditions, and that intra- and interobserver variability using the software is similar to that obtained manually
We have developed a freely-available, self-calibrating software to automatically score rodent freezing behavior during fear conditioning protocols using .avi video files
Summary
The pairing of a conditioned stimulus (CS, e.g., context) with an aversive unconditioned stimulus (US, e.g., electric shock) produces an association between stimuli that leads to fear conditioning, a phenomenon that is widely used to study memory in laboratory animals (Fendt and Fanselow, 1999). The method is considered reliable, issues such as subjectivity, interobserver variability and labor-intensiveness have led to the development of various automated methods to quantify freezing behavior, either based on physical setups (e.g., photobeam detectors, pressure sensors; Valentinuzzi et al, 1998; Nielsen and Crnic, 2002) or video analysis (Shoji et al, 2014). In a systematic review of the rodent fear conditioning literature in 2013 (Carneiro et al, 2018), 56.6% of studies used an automated system to assess freezing behavior (Table 1), mostly through the use of video-based systems. Of these automated tools, Self-Calibrating Software for Measurement of Freezing Behavior
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.