Abstract
Replacing the commercial graphite anode in Li-ion batteries with pseudocapacitor materials is an effective way to obtain high-performance energy storage devices. α-MoO3 is an attractive pseudocapacitor electrode material due to its theoretical capacity of 1117 mAh g−1. Nevertheless, its low conductivity greatly limits its electrochemical performance. MXene is often used as a 2D conductive substrate and flexible framework for the development of a non-binder electrode because of its unparalleled electronic conductivity and excellent mechanical flexibility. Herein, a free-standing α-MoO3/MXene composite anode with a high specific capacity and an outstanding rate capability was prepared using a green and simple method. The resultant α-MoO3/MXene composite electrode combines the advantages of each of the two components and possesses improved Li+ diffusion kinetics. In particular, this α-MoO3/MXene free-standing electrode exhibited a high Li+ storage capacity (1008 mAh g−1 at 0.1 A g−1) and an outstanding rate capability (172 mAh g−1 at 10 A g−1), as well as a much extended cycling stability (500 cycles at 0.5 A g−1). Furthermore, a full cell was fabricated using commercial LiFePO4 as the cathode, which displayed a high Li+ storage capacity of 160 mAh g−1 with an outstanding rate performance (48 mAh g−1 at 1 A g−1). We believe that our research reveals new possibilities for the development of an advanced free-standing electrode from pseudocapacitive materials for high-performance Li-ion storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.