Abstract

Hyperthermia-induced apoptosis and its enhancement in the presence of a temperature-dependent free radical initiator, 2,2′-azobis (2-aminopropane) dihydrochloride (AAPH) were examined in human uterine cervical cancer cell lines, CaSki and HeLa. When both cell lines were treated with hyperthermia at 44°C for 60 min, minimal apoptosis was observed. When combined with nontoxic AAPH (50 mM), significant enhancement of apoptosis was observed, where the initial rate of free radical formation was about twice as high than that at 37°C. Augmentation of the growth delay, lipid peroxidation (LPO), activation of caspase-3 and increase in [Ca2+]i were also observed after the combined treatment. A water-soluble vitamin E, Trolox, blocked the increase in [Ca2+]i and an intracellular Ca2+ chelator, BAPTA-AM, prevented the DNA fragmentation induced by the combination. Cytochrome c release was also revealed by fluorescence microscopy. However, no significant change in mitochondrial membrane potential and expression of Bax and Bcl-2 was observed. A slight increase in Fas expression was observed only in CaSki cells after the combined treatment. These results indicate that hyperthermia and AAPH induce enhanced apoptosis and subsequent cell killing via two pathways; a pathway dependent on increase in LPO and [Ca2+]i, and a pathway associated with cytochrome c release and subsequent caspase activation without changes of mitochondrial membrane potential and Bax/Bcl-2 expression in these cell lines. Since it is known that cancer cells are generally resistant to physical and chemical stress-induced apoptosis, free radical generators like AAPH appear to be a useful thermosensitizer for hyperthermic cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.