Abstract
We present a nodal Discontinuous Galerkin (DG) scheme for the Cahn–Hilliard equation that satisfies the summation–by–parts simultaneous–approximation–term (SBP–SAT) property. The latter permits us to show that the discrete free–energy is bounded, and as a result, the scheme is provably stable. The scheme and the stability proof are presented for general curvilinear three–dimensional hexahedral meshes. We use the Bassi–Rebay 1 (BR1) scheme to compute interface fluxes, and a first order IMplicit–EXplicit (IMEX) scheme to integrate in time. We provide a semi–discrete stability study, and a fully–discrete proof subject to a positivity condition on the solution. Lastly, we test the theoretical findings using numerical cases that include two and three–dimensional problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.