Abstract
In this work we design and analyze a free energy satisfying finite difference method for solving Poisson–Nernst–Planck equations in a bounded domain. The algorithm is of second order in space, with numerical solutions satisfying all three desired properties: i) mass conservation, ii) positivity preserving, and iii) free energy satisfying in the sense that these schemes satisfy a discrete free energy dissipation inequality. These ensure that the computed solution is a probability density, and the schemes are energy stable and preserve the equilibrium solutions. Both one- and two-dimensional numerical results are provided to demonstrate the good qualities of the algorithm, as well as effects of relative size of the data given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.