Abstract

The breathhold contrast-enhanced three-dimensional magnetic resonance angiography (MRA) using T1-weighted gradient-echo imaging sequence is the standard technique for MRA of the thorax. However, this technique is not desirable for certain patients with respiratory insufficiency, serious renal impairment, or allergy to contrast agents. The objective of this study was to optimize and evaluate a non-contrast-enhanced free-breathing pulmonary MRA protocol at 3 Tesla. The time-of-flight protocol was based on a two-dimensional T1-weighted turbo field echo sequence with slice-selective inversion recovery and magnetization transfer preparation together with respiratory navigator gating, cardiac gating, and parallel imaging. Optimal values for time of inversion delay, flip angle and slice thickness were experimentally determined and used for all subjects. Excellent pulmonary MRA images, in which the 7th order branches of pulmonary arteries could be reliably identified, were obtained in the 12 free-breathing healthy volunteers. TI of approximately 300 ms provides the best suppression of background thoracic and cardiac muscles and effective inflow enhancement. With increasing flip angle, the pulmonary vessels gradually brightened and exhibited optimal contrast at 20 degrees-30 degrees. The 2 mm slice thickness and 0.5 mm slice overlap is suitable for visualization of the peripheral pulmonary vessel. The MRA protocol at 3 Tesla may have clinical significance for pulmonary vascular imaging in patients who are not available for contrast-enhanced 3D MRA and CT angiography examination or are unable to sustain a long breath-hold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.