Abstract

A non-autonomous free boundary model for tumor growth is studied. The model consists of a nonlinear reaction diffusion equation describing the distribution of vital nutrients in the tumor and a nonlinear integro-differential equation describing the evolution of the tumor size. First the global existence and uniqueness of a transient solution is established under some general conditions. Then with additional regularity assumptions on the consumption and proliferation rates, the existence and uniqueness of steady-state solutions is obtained. Furthermore the convergence of the transient solutions toward the steady-state solution is verified. Finally the long time behavior of the solutions is investigated by transforming the time-dependent domain to a fixed domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.