Abstract

A Frank scheme based on the Thompson’s tetrahedron is developed to calculate the Burgers vector of dislocations in a face-centered cubic (FCC) crystal during its plastic deformation. A Burgers circuit is located firstly in a deformed crystal with a reference circle surrounding one or more dislocations. The atom-to-atom sequence in a dislocation-free crystal corresponding to the Burgers circuit is determined not from a local reference lattice, but from the edge vectors of the Thompson’s tetrahedron and its mirrors. The final Burgers vector obtained by its Frank definition is accurate, regardless of the position, size and normal direction of the initial reference circle, as long as the same dislocations are surrounded. The present method is validated in determining the Burgers vectors for the dissociation of a perfect dislocation and for the complex reactions of the dislocations from a nanovoid in a deformed crystal under a uniaxial tensile loading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.