Abstract
In this paper, we propose an interdisciplinary approach to (natural) disaster relief management. Our framework combines dynamic and static databases, which consist of social media and authoritative data of an afflicted region, respectively, to model rescue demand during a disaster situation. Using Global Particle Swarm Optimization and Mixed-Integer Linear Programming, we then determine the optimal amount and locations of temporal rescue centers. Furthermore, our disaster relief system identifies an efficient distribution of supplies between hospitals and rescue centers and rescue demand points. By leveraging the temporal dimension of the social media data, our framework manages to iteratively optimize the disaster relief distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.