Abstract

ABSTRACT The capability to predict the behaviour of machines is nowadays experiencing a tremendous growth of interest within Industry 4.0-based manufacturing systems. The route to this end is not straightforward when Run-To-Failure (RTF) data are poorly available or not available at all, thus a strategy must be properly defined. In this proposal, assuming no RTF data, a novelty detection is combined with random coefficient statistical modelling for Remaining Useful Life (RUL) prediction. This approach is formalized by means of a reference framework extending the ISO 13374 – OSA-CBM standards. The framework guides the integration of novelty detection and RUL prediction finally implemented in the scope of a Flexible Manufacturing Line part of the Industry 4.0 Lab of the School of Management of Politecnico di Milano.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.