Abstract
The state identification framework we propose supports complex construction machinery operations using a dual arm. Such support requires compatibility with different types of support and commonality among various operator skill levels. Our framework is organized into (i) real-time task phase identification defined using joint load applied based on environment constraints and (ii) time-series attentional condition identification defined as an internal work-state condition classified by the operational support necessity level and dependent on the vectorial or time-series data selected by the identified task phase. Experiments are conducted using the instrumented hydraulic dual arm system for transport and removal tasks, including complex dual-arm operations. Results show that the number of erroneous contacts, internal force applied, and mental workload decreased without any increase in time, confirming that operational support based on our framework greatly improves individual operator work performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.