Abstract

Proximate human-robot teaming (pxHRT) is a complex subspace within human-robot interaction. Studies in this space involve a range of equipment and methods, including the ability to sense people and robots precisely. Research in this area draws from a wide variety of other fields, from human-human interaction to control theory, making the study design complex, particularly for those outside the field of HRI. In this paper, we introduce a framework that helps researchers consider tradeoffs across various task contexts, platforms, sensors, and analysis methods; metrics frequently used in the field; and common challenges researchers may face. We demonstrate the use of the framework via a case study which employs an autonomous mobile manipulator continuously engaging in shared workspace, handover, and co-manipulation tasks with people, and explores the effect of cognitive workload on pxHRT dynamics. We also demonstrate the utility of the framework in a case study with two groups of researchers new to pxHRT. With this framework, we hope to enable researchers, especially those outside HRI, to more thoroughly consider these complex components within their studies, more easily design experiments, and more fully explore research questions within the space of pxHRT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.