Abstract

Robots often need to accomplish complex tasks in unknown environments, which is a challenging problem, involving autonomous exploration for acquiring necessary scene knowledge and task planning. In traditional approaches, the agent first explores the environment to instantiate a complete planning domain and then invokes a symbolic planner to plan and perform high-level actions. However, task execution is inefficient since the two processes involve many repetitive states and actions. Hence, this letter proposes a framework to co-optimize robot exploration and task planning in unknown environments. To afford robot exploration and symbolic planning not being independent and separated, we design a unified structure named subtask, which is exploited to decompose the robot exploration and planning phases. To select the appropriate subtask each time, we develop a value function and a value-based scheduler to co-optimize exploration and task processing. Our framework is evaluated in a photo-realistic simulator with three complex household tasks, increasing task efficiency by 25%–29%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call