Abstract

Although statistical procedures are well-known for comparing hierarchically related (nested) mean and covariance structure models, statistical tests for comparing non-hierarchically related (nonnested) models have proven more elusive. Although isolated attempts at statistical tests of non-hierarchically related models have been made, none exist within the commonly used maximum likelihood estimation framework, thereby compromising these methods' accessibility and general applicability. Building on general theory developed by Vuong (1989) and techniques for establishing the relation between covariance structure models (Raykov & Penev, 1999), this work provides a general paradigm for conducting statistical tests on competing mean and covariance structure models. The proposed framework is appropriate for hierarchically related models as well as non-hierarchically related models. In developing the structure of the framework, key aspects of model equivalence, relation, and comparison are unified. An illustration demonstrates its use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.