Abstract
A cyber-physical system (CPS) integrates physical (i.e., sensor) devices with cyber (i.e., informational) components to form a context-sensitive system that responds intelligently to dynamic changes in real-world situations. The CPS has wide applications in scenarios such as environment monitoring, battlefield surveillance, and traffic control. One key research problem of CPS is called mining lines in the sand . With a large number of sensors (sand) deployed in a designated area, the CPS is required to discover all trajectories (lines) of passing intruders in real time. There are two crucial challenges that need to be addressed: (1) the collected sensor data are not trustworthy, and (2) the intruders do not send out any identification information. The system needs to distinguish multiple intruders and track their movements. This study proposes a method called LiSM (Line-in-the-Sand Miner) to discover trajectories from untrustworthy sensor data. LiSM constructs a watching network from sensor data and computes the locations of intruder appearances based on the link information of the network. The system retrieves a cone model from the historical trajectories to track multiple intruders. Finally, the system validates the mining results and updates sensors’ reliability scores in a feedback process. In addition, LoRM (Line-on-the-Road Miner) is proposed for trajectory discovery on road networks— mining lines on the roads . LoRM employs a filtering-and-refinement framework to reduce the distance computational overhead on road networks and uses a shortest-path-measure to track intruders. The proposed methods are evaluated with extensive experiments on big datasets. The experimental results show that the proposed methods achieve higher accuracy and efficiency in trajectory mining tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.