Abstract

Weighted-sum energy efficiency (WSEE) is a key performance metric in heterogeneous networks, where the nodes may have different energy efficiency (EE) requirements. Nevertheless, WSEE maximization is a challenging problem due to its nonconvex sum-of-ratios form. Unlike previous work, this paper presents a systematic approach to WSEE maximization under not only power constraints, but also data rate constraints, using a general SINR expression. In particular, the original problem is transformed into an equivalent form, and then a sequential convex optimization (SCO) algorithm is proposed. This algorithm is theoretically guaranteed to converge for any initial feasible point, and, under suitable constraint qualifications, achieves a Karush-Kuhn-Tucker (KKT) solution. Furthermore, we provide remarkable extensions to the proposed methodology, including systems with multiple resource blocks as well as a more general power consumption model which is not necessarily a convex function of the transmit powers. Finally, numerical analysis reveals that the proposed algorithm exhibits fast convergence, low complexity, and robustness (insensitivity to initial points).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.