Abstract

A framework for the validation of computational models used to predict seismic response based on observations from seismometer arrays is presented. The framework explicitly accounts for the epistemic uncertainty related to the unknown characteristics of the ‘site’ (i.e. the problem under consideration) and constitutive model parameters. A mathematical framework which makes use of multiple prediction–observation pairs is used to improve the statistical significance of inferences regarding the accuracy and precision of the computational methodology and constitutive model. The benefits of such a formal validation framework include: (i) development of consistent methods for determination of constitutive model parameters; (ii) rigorous, objective, and unbiased assessment of the validity of various constitutive models and computational methodologies for various problem types and ground motion intensities; and (iii) an improved understanding of the uncertainties in computational model assumptions, constitutive models and their parameters, relative to other seismic response uncertainties such as ground motion variability. Details regarding the implementation of such a framework to achieve the aforementioned benefits are also addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call