Abstract
AbstractUnderstanding what physically sets the shape of temperature distributions will enable more robust predictions of local temperature with global warming. We derive the relationship between the temperature distribution shape and the advection of temperature conditionally averaged at each temperature percentile. This enables quantification of the shift of each percentile that is due to changes in the mean temperature, in horizontal temperature advection, and other processes (e.g., radiation and convection). We use this relationship to examine global model simulations in an idealized aquaplanet model with increasing carbon dioxide. Changes in the distribution with doubling and quadrupling of carbon dioxide are significant, and they are caused by different processes. We find that midlatitude temperature distributions can be explained mostly by the horizontal advection, except in the upper and lower 10% of the distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.