Abstract

Integrated solar fuels and photoelectrochemical (PEC) CO2 reduction (CO2R) are promising pathways toward producing value-added chemicals from CO2. However, improvements are needed in activity and selectivity as well as in fundamental understanding of device behavior to engender wide deployment. We report two single-junction, integrated photocathodes for PEC CO2R based on TOPCon Si and GaAs substrates, which achieve −10 mA cm−2 at −0.33 V vs. RHE with 41% selectivity to C2+ products and at −0.03 V vs. RHE with 27% selectivity to C2+ products, respectively. We investigated the viability of a light-mediated strategy to direct selectivity in buried-junction PEC devices and confirmed that these devices could be optimized independently and described by the physics-based models of the individual components. Finally, we designed a framework to assess operational modes for PEC CO2R devices and demonstrated this framework under continuous galvanostatic control and variable illumination conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call