Abstract

A novel framework for the control of the collective movement of mobile robots is presented and analyzed in this article. It allows a group of robots to move as a unique entity performing the following functions: obstacle avoidance at group level, speed control and modification of the inter-robot distance. Its flocking controller is distributed among the robots, allowing them to move in the desired common direction and maintain a desired inter-robot distance. The framework is made up of different modules that modify the behavior of the group thus allowing different functions. They are based on consensus algorithms that allow the robots to agree on different parameters, taking into account which robot has more relevant information. New modules can be easily designed and incorporated into the framework in order to augment its capabilities. It can be easily implemented on any mobile robot capable of measuring the relative positions of neighboring robots and communicating with them. It has been successfully tested using 8 real robots and in simulation with up to 40 robots, demonstrating experimentally its scalability with an increasing number of robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.