Abstract

Predictive analysis gradually gains importance in industry. For instance, service engineers at Siemens diagnostic centres unveil hidden knowledge in huge amounts of historical sensor data and use this knowledge to improve the predictive systems analysing live data. Currently, the analysis is usually done using data-dependent rules that are specific to individual sensors and equipment. This dependence poses significant challenges in rule authoring, reuse, and maintenance by engineers. One solution to this problem is to employ ontology-based data access (OBDA) that provides a conceptual view of data via an ontology. However, classical OBDA systems do not support access to temporal data and reasoning over it. To address this issue, we propose a framework of temporal OBDA. In this framework, we use extended mapping languages to extract information about temporal events in RDF format, classical ontology and rule languages to reflect static information, as well as a temporal rule language to describe events. We also propose a SPARQL-based query language for retrieving temporal information and, finally, an architecture of system implementation extending the state-of-the-art OBDA platform Ontop.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.