Abstract

In this paper1 we propose a framework for Statistical Static Timing Analysis (SSTA) considering intra-die process variations. Given a cell library, we propose an accurate method to characterize the gate and interconnect delay as well as slew as a function of underlying parameter variations. Using these accurate delay models, we propose a method to perform SSTA based on a quadratic delay and slew model. The method is based on efficient dimensionality reduction technique used for accurate computation of the max of two delay expansions. Our results indicate less than 4% error in the variance of the delay models compared to SPICE Monte Carlo and less than 1% error in the variance of the circuit delay compared to Monte Carlo simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.