Abstract

Algebraic proof systems, such as Polynomial Calculus (PC) and Polynomial Calculus with Resolution (PCR), refute contradictions using polynomials. Space complexity for such systems measures the number of distinct monomials to be kept in memory while verifying a proof. We introduce a new combinatorial framework for proving space lower bounds in algebraic proof systems. As an immediate application, we obtain the space lower bounds previously provided for PC/PCR [Alekhnovich et al. 2002; Filmus et al. 2012]. More importantly, using our approach in its full potential, we prove Ω( n ) space lower bounds in PC/PCR for random k -CNFs ( k ≥ 4) in n variables, thus solving an open problem posed in Alekhnovich et al. [2002] and Filmus et al. [2012]. Our method also applies to the Graph Pigeonhole Principle, which is a variant of the Pigeonhole Principle defined over a constant (left) degree expander graph.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.