Abstract

The notion of common sense is invoked so frequently in contexts as diverse as everyday conversation, political debates, and evaluations of artificial intelligence that its meaning might be surmised to be unproblematic. Surprisingly, however, neither the intrinsic properties of common sense knowledge (what makes a claim commonsensical) nor the degree to which it is shared by people (its "commonness") have been characterized empirically. In this paper, we introduce an analytical framework for quantifying both these elements of common sense. First, we define the commonsensicality of individual claims and people in terms of the latter's propensity to agree on the former and their awareness of one another's agreement. Second, we formalize the commonness of common sense as a clique detection problem on a bipartite belief graph of people and claims, defining [Formula: see text] common sense as the fraction [Formula: see text] of claims shared by a fraction [Formula: see text] of people. Evaluating our framework on a dataset of [Formula: see text] raters evaluating [Formula: see text] diverse claims, we find that commonsensicality aligns most closely with plainly worded, fact-like statements about everyday physical reality. Psychometric attributes such as social perceptiveness influence individual common sense, but surprisingly demographic factors such as age or gender do not. Finally, we find that collective common sense is rare: At most, a small fraction [Formula: see text] of people agree on more than a small fraction [Formula: see text] of claims. Together, these results undercut universalistic beliefs about common sense and raise questions about its variability that are relevant both to human and artificial intelligence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.