Abstract

This article presents a psychophysiological construct of interest as a knowledge emotion and illustrates the importance of interest detection in a cultural heritage context. The objective of this work is to measure and classify psychophysiological reactivity in response to cultural heritage material presented as visual and audio. We present a data processing and classification framework for the classification of interest. Two studies are reported, adopting a subject-dependent approach to classify psychophysiological signals using mobile physiological sensors and the support vector machine learning algorithm. The results show that it is possible to reliably infer a state of interest from cultural heritage material using psychophysiological feature data and a machine learning approach, informing future work for the development of a real-time physiological computing system for use within an adaptive cultural heritage experience designed to adapt the provision of information to sustain the interest of the visitor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.