Abstract

This letter presents a unified framework for the design of prescribed-time controllers under time-varying input and state constraints for normal-form unknown nonlinear systems with uncertain input gain. The proposed approach is based on a time-domain mapping method by which any infinite-time system can be corresponded to a prescribed-time system and vice versa. It is shown that the design of a constrained nonasymptotic prescribed-time controller can be reduced to the asymptotic control design for an associated constrained infinite-time system. Fa\`a di Bruno's formula and Bell polynomials are used for a constructive representation of the associated infinite-time system. The presented results are not confined to a particular mapping function, which adds to the flexibility of the proposed scheme. It is shown that necessary and sufficient conditions on the uniform (practical) prescribed-time stability and attractivity can be obtained as corollaries of the main result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.