Abstract

AbstractIn the paper we present a framework for partitioning data parallel computations across a heterogeneous metasystem at runtime. The framework is guided by program and resource information which is made available to the system. Three difficult problems are handled by the framework: processor selection, task placement and heterogeneous data domain decomposition. Solving each of these problems contributes to reduced elapsed time. In particular, processor selection determines the best grain size at which to run the computation, task placement reduces communication cost, and data domain decomposition achieves processor load balance. We present results which indicate that excellent performance is achievable using the framework. The paper extends our earlier work on partitioning data parallel computations across a single‐level network of heterogeneous workstations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.