Abstract
The paper describes the design and implementation of BNB-Solver, an object-oriented framework for discrete and continuous parallel global optimization. The framework supports exact branch-and-bound algorithms, heuristic methods and hybrid approaches. BNB-Solver provides a support for distributed and shared memory architectures. The implementation for distributed memory machines is based on MPI and thus can run on almost any computational cluster. In order to take advantages of multicore processors we provide a separate multi-threaded implementation for shared memory platforms. We introduce a novel collaborative scheme for combining exact and heuristic search methods that provides the support for sophisticated parallel heuristics and convenient balancing between exact and heuristic methods. In the experimental results section we discuss a nonlinear programming solver and a highly efficient knapsack solver that significantly outperforms existing parallel implementations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.