Abstract

In conventional three-dimensional magnetic resonance elastography, motion encoding gradients (MEGs) synchronized to a mechanical excitation are applied separately in each direction to encode tissue displacement generated by the corresponding waves. This requires long acquisition times that introduce errors due to patient motion and may hinder clinical deployment of magnetic resonance elastography. In this article, a framework for MEGs sequence design is proposed to reduce scanning time and increase signal-to-noise ratio. The approach is based on applying MEGs in all three directions simultaneously with varying parameters, and formulation of the problem as a linear estimation of the wave properties. Multidirectional MEGs sequences are derived by setting the problem in an experimental design framework. Such designs are implemented and evaluated on simulation and phantom data. Estimation error of the displacement using the proposed MEGs designs is reduced up to a factor of two in comparison with a unidirectional design with a same number of acquisitions. Alternatively, for the same error, scanning time is reduced up to a factor of three using the multidirectional designs. The proposed framework generalizes acquisition of magnetic resonance elastography, and allows quantification of design performance, and optimization-based derivation of designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.