Abstract

Accurate simulation of atmospheric flow in weather and climate prediction models requires the discretization of the governing equations to have a number of desirable properties. Although these properties can be achieved relatively straightforwardly on a latitude-longitude grid, they are much more challenging on the various quasi-uniform spherical grids that are now under consideration. A recently developed scheme—called TRiSK—has these desirable properties on grids that have an orthogonal dual. The present work extends the TRiSK scheme into a more general framework suitable for grids that have a nonorthogonal dual, such as the equiangular cubed sphere. We also show that this framework fits within the wider framework of mimetic discretizations and discrete exterior calculus. One key ingredient is the definition of certain mapping operators that are discrete analogues of the Hodge star operator, enabling the definition of a compatible inner product. Discrete Coriolis terms are also included within the mimet...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call